Electrical impedance tomography spectroscopy (EITS) for human head imaging.
نویسندگان
چکیده
Electrical impedance tomography (EIT) is a recently developed medical imaging method which has practical advantages for imaging brain function as it is inexpensive, rapid and portable. Its principal use in validated human studies to date has been to image changes in impedance at a single excitation frequency over time, but there are potential applications where it is desirable to obtain images from a single point in time, which could be achieved by imaging over multiple frequencies. We describe a novel multifrequency EIT design which provides up to 64 electrodes for imaging in the head. This was achieved by adding a multiplexer to a single channel of an existing system, the Sheffield Mark 3.5. This provides a flexible protocol for addressing up to 64 electrodes but CMRR decreases from 90 dB to 80 dB and analogue amplifier bandwidth from > 1.6 MHz to 0.8 MHz. This did not significantly affect performance, as cylinders of banana, 10% of the diameter of a saline filled spherical tank, could be visualized with frequency referenced imaging. The design appears to have been an acceptable compromise between practicality and performance and will now be employed in clinical trials of multifrequency EIT in stroke, epilepsy and neonatal brain injury.
منابع مشابه
Performance improvements in a MF-EIT system for acute stroke: The UCL Mk2.5
A recently developed EITS system, the UCLH mk2.5 was tested on a resistor phantom and in linear time and frequency difference imaging of a cylindrical tank, 10cm diameter, filled with 0.1% saline, and 16 electrodes in a ring; the test object was a cylinder of banana, 2 cm long and 1 cm in diameter. Reproducible images with the same location as the test object were obtained with both methods. No...
متن کاملMulti-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration.
MFEIT (multi-frequency electrical impedance tomography) could distinguish between ischaemic and haemorrhagic stroke and permit the urgent use of thrombolytic drugs in patients with ischaemic stroke. The purpose of this study was to characterize the UCLH Mk 2 MFEIT system, designed for this purpose, with 32 electrodes and a multiplexed 2 kHz to 1.6 MHz single impedance measuring circuit. Data we...
متن کاملExploratory Study on the Methodology of Fast Imaging of Unilateral Stroke Lesions by Electrical Impedance Asymmetry in Human Heads
Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can a...
متن کاملApplications of Electrical Impedance Tomography in Neurology
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...
متن کاملMagnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging
This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological measurement
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2003